Model of Electronic Structure and Superconductivity in Orbitally Ordered FeSe.
نویسندگان
چکیده
We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillation measurements on FeSe, assuming mean-field-like site- and/or bond-centered ferro-orbital ordering at the structural transition. We show how the resulting model provides a consistent explanation of the temperature dependence of the measured Knight shift and the spin-relaxation rate. Furthermore, the superconducting gap structure obtained from spin-fluctuation theory exhibits nodes on the electron pockets, consistent with the V-shaped density of states obtained by tunneling spectroscopy on this material, and the temperature dependence of the London penetration depth.
منابع مشابه
Why does undoped FeSe become a high-Tc superconductor under pressure?
Unlike the parent phases of the iron-arsenide high-Tc superconductors, undoped FeSe is not magnetically ordered and exhibits superconductivity with Tc approximately 9 K. Equally surprising is the fact that applied pressure dramatically enhances the modest Tc to approximately 37 K. We investigate the electronic properties of FeSe using 77Se NMR to search for the key to the superconducting mechan...
متن کاملElectronic structure and superconductivity of FeSe-related superconductors.
FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, F...
متن کاملCommon electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films
The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Ferm...
متن کاملSuperconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li0.8Fe0.2OH)FeSe
In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity (Tc of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K ...
متن کاملEffect of nematic ordering on electronic structure of FeSe
Electronically driven nematic order is often considered as an essential ingredient of high-temperature superconductivity. Its elusive nature in iron-based superconductors resulted in a controversy not only as regards its origin but also as to the degree of its influence on the electronic structure even in the simplest representative material FeSe. Here we utilized angle-resolved photoemission s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 115 2 شماره
صفحات -
تاریخ انتشار 2015